Ancient reptiles: Southern Utah researchers unearth 94-million-year-old marine beast

An artist reconstruction of a Sarabosaurus dahli swimming with ammonites and various fish, Southern Utah, 94 million years ago | Artwork by Andrey Atuchin, St. George News

KANAB — A fossil unearthed by a Bureau of Land Management team is unlocking new information about the evolution of the most successful marine reptile family during the later part of the dinosaur age.

An artist reconstruction of a Sarabosaurus dahli swimming with ammonites and various fish, Southern Utah, 94 million years ago | Artwork by Andrey Atuchin, St. George News

The new research, published in Cretaceous Research, focuses on a 94-million-year-old mosasaur discovered in the gray shale badlands of the National Park Service Glen Canyon National Recreation Area.

The journey began nearly 11 years prior as Scott Richardson, a trained volunteer working under Dr. Barry Albright of the University of North Florida, looked for traces of creatures that once swam in the vast seaway that covered most of the middle of North America during the Late Cretaceous Period — between 84 and 95 million years ago.

In March 2012, Richardson found numerous small skull fragments and vertebrae of what proved to be an early mosasaur scattered across a broad shale slope.

A joint BLM-National Park Service crew recovered nearly 50% of the specimen over the course of the next two field seasons, including enough skull to determine its exact identity.

Back in the lab, BLM Paria River District Paleontologist Dr. Alan Titus and his crew of BLM staff and volunteers traded the unforgiving summer heat of the Kaiparowits for the air-conditioned comfort of the lab to meticulously clean and glue the fossils to prepare them for research.

The team included Steve Dahl, the longest-serving paleo volunteer at the monument. Dahl’s contributions to the project were later honored in the species name, Sarabosaurus dahli, or “Dahl’s reptile of the mirage.”

The skull of a plesiosaur, an extinct marine reptile, discovered at Glen Canyon National Recreation Area in Southern Utah, date not specified | Photo by National Park Service, St. George News

The name alludes to both the ancient seaway in which this animal swam that has long since vanished and the mirages that accompany the region’s extreme summer heat.

Early on, the BLM team concluded that the specimen was potentially the oldest mosasaur ever found. That was confirmed when Dr. Titus sent the specimen to vertebrate paleontologist and mosasaur expert Michael Polcyn of Southern Methodist University in Dallas for further analysis.

“I knew right away we had something special, especially considering it was so old,” said Polcyn. “Mosasaurs from younger rocks are relatively abundant, but mosasaurs are extremely rare in rocks older than about 90 million years,” said Dr. Titus, a co-author of the study. “Finding one that preserves so much informative data, especially one of this age, is truly a significant discovery.”

The earliest mosasaurs were about 3-5 feet long, but they evolved into gigantic lizards that dominated the oceans during the latter part of the dinosaur age.

Their land-dwelling ancestors were similar to the modern Komodo Dragon that, through time, evolved streamlined bodies, fins and shark-like tails that propelled them through the water. Early forms were more lizard-like in appearance and retained relatively primitive tails and limbs.

“Sarabosaurus sheds light on long-standing questions regarding the relationship of some early-branching mosasaurid species but also provides new insights into the evolution and antiquity of a novel cranial blood supply seen in a particular group of mosasaurs,” said Polcyn, who led the study.

Ann Johnson at the Natural History Museum of Utah in the process of revealing the skull of a Teratophoneus Curriei, a.k.a. monstrous murderer, found in the Grand Staircase Escalante Monument, date unspecified | Photo courtesy of NHMU, St. George News

Using micro-CT scanning and computer reconstruction to analyze the brain-cases of major mosasaur groups and map their vascular patterns showed how Sarabosaurus evolved a novel blood supply to the brain; a feature linking it with a group of better-known and geologically younger mosasaurs. 

The way that blood gets to the brain is quite conservative in lizards, with the internal carotid arteries carrying the load,” said Polcyn.

“One group of mosasaurs that includes Sarabosaurus did something very different, shifting the primary blood supply from a branch of the internal carotid arteries to arteries entering the brain below the brain stem, a shift similarly observed in the evolution of cranial circulation in whales,” he added.

Copyright St. George News, SaintGeorgeUtah.com LLC, 2023, all rights reserved.

Free News Delivery by Email

Would you like to have the day's news stories delivered right to your inbox every evening? Enter your email below to start!